U+1F73E Alchemical Symbol for Bismuth Ore
U+1F73E was added in Unicode version 6.0 in 2010. It belongs to the block
This character is a Otro símbolo and is commonly used, that is, in no specific script. El carácter es también conocido como tinglass.
The glyph is not a composition. It has no designated width in East Asian texts. In bidirectional text it acts as Other Neutral. When changing direction it is not mirrored. The word that U+1F73E forms with similar adjacent characters prevents a line break inside it.
El Wikipedia tiene la siguiente información acerca de este punto de código:
Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs naturally, and its sulfide and oxide forms are important commercial ores. The free element is 86% as dense as lead. It is a brittle metal with a silvery-white color when freshly produced. Surface oxidation generally gives samples of the metal a somewhat rosy cast. Further oxidation under heat can give bismuth a vividly iridescent appearance due to thin-film interference. Bismuth is both the most diamagnetic element and one of the least thermally conductive metals known.
Bismuth was long considered the element with the highest atomic mass whose nuclei do not spontaneously decay. However, in 2003 it was discovered to be extremely weakly radioactive. The metal's only primordial isotope, bismuth-209, undergoes alpha decay with a half-life about a billion times the estimated age of the universe.
Bismuth metal has been known since ancient times. Before modern analytical methods bismuth's metallurgical similarities to lead and tin often led it to be confused with those metals. The etymology of "bismuth" is uncertain. The name may come from mid-sixteenth century Neo-Latin translations of the German words weiße Masse or Wismuth, meaning 'white mass', which were rendered as bisemutum or bisemutium.
Bismuth compounds account for about half the global production of bismuth. They are used in cosmetics; pigments; and a few pharmaceuticals, notably bismuth subsalicylate, used to treat diarrhea. Bismuth's unusual propensity to expand as it solidifies is responsible for some of its uses, as in the casting of printing type. Bismuth, when in its elemental form, has unusually low toxicity for a heavy metal. As the toxicity of lead and the cost of its environmental remediation became more apparent during the 20th century, suitable bismuth alloys have gained popularity as replacements for lead. Presently, around a third of global bismuth production is dedicated to needs formerly met by lead.
Representaciones
Sistema | Representación |
---|---|
N.º | 128830 |
UTF-8 | F0 9F 9C BE |
UTF-16 | D8 3D DF 3E |
UTF-32 | 00 01 F7 3E |
URL-Quoted | %F0%9F%9C%BE |
HTML hex reference | 🜾 |
Mojibake mal de windows-1252 | 🜾 |
alias | tinglass |
Otros sitios
Registro completo
Propiedad | Valor |
---|---|
6.0 (2010) | |
ALCHEMICAL SYMBOL FOR BISMUTH ORE | |
— | |
Alchemical Symbols | |
Otro símbolo | |
Common | |
Other Neutral | |
Not Reordered | |
none | |
|
|
✘ | |
|
|
|
|
✘ | |
|
|
|
|
|
|
|
|
|
|
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
|
|
Any | |
✔ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
0 | |
0 | |
0 | |
✘ | |
None | |
— | |
NA | |
Other | |
— | |
✘ | |
✘ | |
✘ | |
✘ | |
Sí | |
Sí | |
|
|
Sí | |
|
|
Sí | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
Other | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
Other | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
|
|
None | |
neutral | |
Not Applicable | |
— | |
No_Joining_Group | |
Non Joining | |
Alphabetic | |
none | |
not a number | |
|
|
U |